Home » » Materi SMA : Fungsi (Relasi) Matematika

Materi SMA : Fungsi (Relasi) Matematika

Written By Naufaldi Rafif Satriya on Wednesday, February 13, 2013 | 6:58 AM


Fungsi, dalam istilah matematika adalah pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain) kepada anggota himpunanyang lain (dinamakan sebagai kodomain). Istilah ini berbeda pengertiannya dengan kata yang sama yang dipakai sehari-hari, seperti “alatnya berfungsi dengan baik.” Konsep fungsi adalah salah satu konsep dasar dari matematika dan setiap ilmu kuantitatif. Istilah "fungsi", "pemetaan", "peta", "transformasi", dan "operator" biasanya dipakai secara sinonim.

Ringkasan Materi
A.        Relasi
Aturan yang menghubungkan setiap anggota himpunan A ke B disebut Relasi dari A ke B.
Di tulis : R : AB.
Istilah-istilah :
Himpunan A disebut Domain = Daerah Asal
Himpunan B disebut Kodomain = Daerah Kawan
Range = Daerah Hasil
B.        Menyatakan Relasi
Relasi dapat dinyatakan dengan tiga cara, yaitu :
1.      Diagram Panah
2.      Himpunan Pasangan Berurutan
3.      Grafik Cartesius
C.        Produk Cartesius
Jika x ϵ A dan y ϵ B, maka produk Cartesius A ke B adalah himpunan pasangan berurutan (x, y).
Ditulis : AxB ={(x, y)І xϵ A dan yϵ B}
Contoh :
A = {a, b, c}
B = {1, 2}
maka dengan menggunakan tabel A x B di peroleh :
A x B
1
2
a
(a, 1)
(a, 2)
b
(b, 1)
(b, 2)
c
(c, 1)
(c, 2)
A x B = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}
Sifat-sifat :
1.      A x B  B x A
2.      n(A x B) = n(B x A)
D.       Pemetaan (Fungsi)
Pemetaan adalah relasi khusus yang memasangkan setiap anggota himpunan A dengan tepat pada satu anggota himpunan B.



Komposisi Fungsi
Komposisi fungsi merupakan penggabungan operasi dua fungsi secara berurutan yang akan menghasilkan sebuah fungsi baru.
Komposisi dua fungsi f(x) dan g(x)  dinotasikan dengan simbol (f \circ g)(x)  atau (g \circ f)(x) .
dimana
(f\circ g)(x)=f(g(x))
(g\circ f)(x)=g(f(x))
Sifat Komposisi Fungsi
  • (g \circ f)(x) \neq (f \circ g)(x)
  • (f\circ (g\circ h))(x)=((f\circ g)\circ h)(x)
Contoh :
diberikan fungsi :
{\color{Red} f(x)=2x+1}
{\color{Blue} g(x)=3x^2}
{\color{DarkGreen} h(x)=\frac{1}{x+4}}
1. (f\circ g)(x) = ….?
* fungsi g(x) disubtitusikan ke fungsi f(x)
\begin{align*}(f\circ g)(x)&=&{\color{Red} f}({\color{Blue} g(x)})\\&=&{\color{Red} f}({\color{Blue} 3x^2})\\&=&{\color{Red} 2(}{\color{Blue} 3x^2}{\color{Red} )+1}\\(f\circ g)(x)&=&6x^2+1 \end{align*}
2. (g\circ h)(x) = ….?
* fungsi  h(x) disubtitusikan ke fungsi  g(x)
\begin{align*}(g\circ h)(x)&=&{\color{Blue} g}({\color{DarkGreen} h(x)})\\&=&{\color{Blue} g}({\color{DarkGreen} \frac{1}{x+4}})\\&=&{\color{Blue} 3}\left ({\color{DarkGreen} \frac{1}{x+4}} \right )^{\color{Blue} 2}\\&=&3\left (\frac{1}{x^2+8x+16} \right )\\(g\circ h)(x)&=&\frac{3}{x^2+8x+16} \end{align*}
3.(h\circ g\circ f)(x) =…?
* fungsi f(x) disubtitusikan terlebih dahulu ke fungsi g(x) nah, hasilnya baru disubtitusikan ke fungsi h(x), perhatikan warna mewakili subtitusi ….ok!
\begin{align*}(h\circ g\circ f)(x)&=&{\color{DarkGreen} h}({\color{Blue} g}({\color{Red} f(x)}))\\&=&{\color{DarkGreen} h}({\color{Blue} g}({\color{Red} 2x+1}))\\&=&{\color{DarkGreen} h}({\color{Blue} 3}({\color{Red} 2x+1})^{\color{Blue} 2})\\&=&{\color{DarkGreen} h}(3(4x^2+4x+1))\\&=&{\color{DarkGreen} h}(12x^2+12x+3)\\&=&\frac{{\color{DarkGreen} 1}}{\left (12x^2+12x+3 \right ){\color{DarkGreen} +4}}\\&=&\frac{1}{12x^2+12x+7}\end{align*}
Bagaimana contoh diatas???sudah cukup jelas,kan???!!
Berhati-hatilah dalam mensubtitusikan ya….

Mencari salah satu fungsi jika komposisi fungsi diketahui
1. Mencari g(x)  jika  f(x)dan (f\circ g)(x)  diketahui
contoh soal dan pembahasan :
Diketahui (f\circ g)(x)=19-6x  dan  {\color{Red} f(x)=3x+1}  tentukan fungsi {\color{Blue} g(x)} !
jawab :
\begin{align*}(f\circ g)(x)&=&19-6x\\{\color{Red} f}({\color{Blue} g(x)})&=&19-6x\\{\color{Red} 3(}{\color{Blue} g(x)}{\color{Red} )+1}&=&19-6x\\{\color{Red} 3(}{\color{Blue} g(x)}{\color{Red} )}&=&19-6x{\color{Red} -1}\\{\color{Blue} g(x)}&=&\frac{18-6x}{3}\\{\color{Blue} g(x)}&=&6-2x \end{align*}
2. Mencari f(x)   jika  g(x)dan (f\circ g)(x)  diketahui
contoh soal dan pembahasan :
Diketahui (f\circ g)(x)=2x+1 dan {\color{Blue} (g)(x)=x+3} tentukan {\color{Red} f(x)} !
jawab :
\begin{align*}(f\circ g)(x)&=&2x+1\\f({\color{Blue} g(x)})&=&2x+1\\f({\color{Blue} x+3})&=&2x+1\end{align*}
Kita misalkan dulu :
\begin{align*}{\color{Blue} x+3}&=&{\color{DarkGreen} y}\\x&=&{\color{DarkGreen} y-3}\end{align*}
Subtitusikan kembali ke fungsi :
\begin{align*}f({\color{Blue} x+3})&=&2x+1\\f({\color{DarkGreen} y})&=&2({\color{DarkGreen} y-3})+1\\f({\color{DarkGreen} y})&=&2y-6+1\\f({\color{DarkGreen} y})&=&2y-5\\f(x)&=&2x-5\end{align*}
****
Share this article :

2 komentar:

  1. Sangat bermanfaat bagi yang lagi belajar.
    Tapi jujur aja ane puyeng banget waktu jaman dulu sekolah sama yang namanya MAT, apalagi FISIKA, mending pelajaran afalan deh. Hahaha

    ReplyDelete
  2. setuju.. kalau saya sendiri lebih menyukai pelajaran fisika..hehe

    ReplyDelete

Komentarlah Dengan Baik dan Benar. Jangan ada SPAM dan beri kritik saran kepada blog ILMU DUNIA DAN AKHIRAT.

Mengingat Semakin Banyak Komentar SPAM maka setiap komentar akan di seleksi. :)

"Barangsiapa beriman kepada Allah dan hari akhir hendaklah berbicara yang baik-baik atau diam." (HR. Bukhari)

>TERIMA KASIH<

ILMU DUNIA DAN AKHIRAT. Powered by Blogger.
 
Support : Ilmu Dunia dan Akhirat | I.D.D.A. | ILMU DUNIA DAN AKHIRAT
Copyright © 2013. I.D.D.A.╚ - All Rights Reserved
Template Created by Creating Website Published by Mas Template
Proudly powered by Blogger